Effect of nonlinear and noncollinear transformation strain pathways in phase-field modeling of nucleation and growth during martensite transformation
نویسندگان
چکیده
The phase-field microelasticity theory has exhibited great capacities in studying elasticity and its effects on microstructure evolution due to various structural and chemical non-uniformities (impurities and defects) in solids. However, the usually adopted linear and/ or collinear coupling between eigen transformation strain tensors and order parameters in phase-field microelasticity have excluded many nonlinear transformation pathways that have been revealed in many atomistic calculations. Here we extend phasefield microelasticity by adopting general nonlinear and noncollinear eigen transformation strain paths, which allows for the incorporation of complex transformation pathways and provides a multiscale modeling scheme linking atomistic mechanisms with overall kinetics to better describe solid-state phase transformations. Our case study on a generic cubic to tetragonal martensitic transformation shows that nonlinear transformation pathways can significantly alter the nucleation and growth rates, as well as the configuration and activation energy of the critical nuclei. It is also found that for a pure-shear martensitic transformation, depending on the actual transformation pathway, the nuclei and austenite/martensite interfaces can have nonzero far-field hydrostatic stress and may thus interact with other crystalline defects such as point defects and/or background tension/ compression field in a more profound way than what is expected from a linear transformation pathway. Further significance is discussed on the implication of vacancy clustering at austenite/martensite interfaces and segregation at coherent precipitate/ matrix interfaces.
منابع مشابه
Strain-Induced Martensite Transformation Simulations during Cold Rolling of AISI 301 Austenitic Stainless Steel
Austenite is a semi-stable phase in most stainless steels that deforms to martensite under Md30 and forms martensitetype ά and ε due to the deformation in the steels. Since the distribution of strain induced martensite plays animportant role in achieving desired properties, the main objective of the present work is to model martensitedistribution of ά during cold rolling using...
متن کاملInfluence of heat generation on the phase transformations and impact responses of composite plates with embedded SMA wires
In the present research, in contrast to the available papers, not only the superelasticity but also the shape memory effects are taken into account in determination of the impact responses. At the same time, in addition to modifying Brinson’s model for the shape memory alloys (SMAs), to include new parameters and loading events, and Hertz contact law, distributions of the SMA phases are conside...
متن کاملThe effect of quenching media and annealing temperature on graphitization transformation kinetic of CK100 tool steel
In this research, graphitization transformation of a commercial hypereutectoid steel called CK100 was studied by the dilatometric experiments at the range of 600 – 700 °C from prior martensitic structure. Also the effect of quenching media on the initial graphitization time and completion of transformation has been discussed. Also, graphitization transition from the different prior microstructu...
متن کاملPHASE TRANSFORMATION DURING WEAR OF AISI STAINLESS STEEL 316
Abstract: Austenitic stainless steels exhibit a low hardness and weak tribological properties. The wear behaviour of austenitic stainless steel AISI 316 was evaluated through the pin on disc tribological method. For investigating the effect of wear on the changes in microstructure and resistance to wear, optical microscopy and scanning electron microscope were used. The hardness of the worn...
متن کاملNondestructive Evaluation of Strain-Induced Phase Transformation and Damage Accumulation in Austenitic Stainless Steel Subjected to Cyclic Loading
Strain-induced phase transformation and damage accumulation in austenitic stainless steel subjected to cyclic loading were investigated by nondestructive evaluation. The cyclic loading test was performed at various strain amplitudes at the same strain rate. The volume fraction of the strain-induced phase transformation (α′-martensite) was determined by ferrite scope and magnetic coercivity meas...
متن کامل